Theorem
Let a be the root of a polynomial

$$
f(x)=b_{d} x^{d}+\cdots+b_{1} x+b_{0}=0
$$

where each $b_{i} \in \mathbb{Z}$ and the polynomial has no rational roots. Then $\exists c>0$ s.t. for any $\frac{p}{q} \in \mathbb{Q}$ in reduced form

$$
\begin{aligned}
& \quad|q \alpha-p| \geqslant \frac{c}{q^{d-1}} \\
& \left(\text { ie } \quad\left|\alpha-\frac{p}{q}\right| \geqslant \frac{c}{q^{d}}\right)
\end{aligned}
$$

pf) We know that $f(\alpha)=0$

$$
\begin{aligned}
&\left|f\left(\frac{p}{q}\right)\right|=\left|b_{d}\left(\frac{p}{q}\right)^{d}+\ldots+b \frac{p}{q}+b_{0}\right| \\
& \text { combine into one fraction } \\
&=\left|\frac{b_{d} p^{d}+b_{d-1} p^{d-1}+\ldots+b_{p} q^{d-1}+b_{0} q^{d}}{q^{d}}\right| \geqslant \frac{1}{q^{d}}
\end{aligned}
$$

estimate $f\left(\frac{p}{q}\right)$ another way?

$$
f\left(\frac{p}{q}\right)=f\left(\frac{p}{q}\right)-f(\alpha)
$$

by the mean value theorems

$$
\begin{aligned}
& \exists z \in\left(a, \frac{p}{q}\right) \text { s.t. } \\
& \quad\left|f\left(\frac{p}{q}\right)-f(\alpha)\right|=f^{\prime}(z)\left(\frac{p}{q}-\alpha\right)
\end{aligned}
$$

$f^{\prime}(z) \leq c$ when z is close to α. for some C.

So we have
(**)

$$
\begin{array}{r}
\left.\left|f\left(\frac{p}{q}\right)\right|=\left|f\left(\frac{p}{q}\right)-f(\alpha)\right|=\mid f^{\prime}(z)\right)\left|\frac{p}{q}-\alpha\right| \leq \\
\\
c\left|\frac{p}{q}-\alpha\right|
\end{array}
$$

(\#) and \#t together imply

$$
\left|\frac{p}{q}-\alpha\right| \geqslant \frac{1 / c}{q^{d}}
$$

Series of excersices for today
I] consider an expression of the form $f(x)=\frac{a x+b}{c x+d} \quad a, b, c, d \in \mathbb{Z}$. Show that $\frac{1}{n+f(x)}$ is an expression of the same form.

2 If α has periodic continued fraction expansion then

$$
\alpha=\frac{1}{n_{1}+\frac{1}{n_{2}+\ldots} \frac{1}{n_{k}+\alpha}} \quad \text { for some } k \text {. }
$$

3 Combine $7 \& 2$ to show that any fraction with periodic digits is a quadratic irrational Lie the root of a quadratic equ with integer coefficients)

0] Show that if $\alpha=\frac{1}{a+\alpha}$ α is a quadratic irrational.

